
Package: cuda.ml (via r-universe)
September 1, 2024

Type Package

Title R Interface for the RAPIDS cuML Suite of Libraries

Version 0.3.2.9000

Maintainer Daniel Falbel <daniel@rstudio.com>

Description R interface for RAPIDS cuML
(<https://github.com/rapidsai/cuml>), a suite of
GPU-accelerated machine learning libraries powered by CUDA
(<https://en.wikipedia.org/wiki/CUDA>).

License MIT + file LICENSE

URL https://mlverse.github.io/cuda.ml/

BugReports https://github.com/mlverse/cuda.ml/issues

Depends R (>= 3.2)

Imports ellipsis, hardhat, parsnip, Rcpp (>= 1.0.6), rlang (>= 0.1.4)

Suggests callr, glmnet, MASS, magrittr, mlbench, purrr, reticulate,
testthat, xgboost

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 7.1.2

OS_type unix

SystemRequirements RAPIDS cuML (see https://rapids.ai/start.html)

NeedsCompilation yes

Repository https://mlverse.r-universe.dev

RemoteUrl https://github.com/mlverse/cuda.ml

RemoteRef HEAD

RemoteSha 54fc9575e271b6a94c8650bea1887bb7ffa2b333

1

https://github.com/rapidsai/cuml
https://en.wikipedia.org/wiki/CUDA
https://mlverse.github.io/cuda.ml/
https://github.com/mlverse/cuda.ml/issues

2 Contents

Contents

cuda.ml . 3
cuda_ml_agglomerative_clustering . 3
cuda_ml_can_predict_class_probabilities . 4
cuda_ml_dbscan . 5
cuda_ml_elastic_net . 6
cuda_ml_fil_enabled . 9
cuda_ml_fil_load_model . 9
cuda_ml_inverse_transform . 11
cuda_ml_is_classifier . 12
cuda_ml_kmeans . 12
cuda_ml_knn . 13
cuda_ml_knn_algo_ivfflat . 16
cuda_ml_knn_algo_ivfpq . 17
cuda_ml_knn_algo_ivfsq . 18
cuda_ml_lasso . 18
cuda_ml_logistic_reg . 21
cuda_ml_ols . 24
cuda_ml_pca . 26
cuda_ml_rand_forest . 28
cuda_ml_rand_proj . 31
cuda_ml_ridge . 32
cuda_ml_serialize . 35
cuda_ml_sgd . 36
cuda_ml_svm . 39
cuda_ml_transform . 43
cuda_ml_tsne . 43
cuda_ml_tsvd . 45
cuda_ml_umap . 46
cuda_ml_unserialize . 49
cuML_major_version . 50
cuML_minor_version . 50
has_cuML . 51
predict.cuda_ml_fil . 51
predict.cuda_ml_knn . 52
predict.cuda_ml_linear_model . 53
predict.cuda_ml_logistic_reg . 53
predict.cuda_ml_rand_forest . 54
predict.cuda_ml_svm . 55

Index 56

cuda.ml 3

cuda.ml cuda.ml

Description

This package provides a R interface for the RAPIDS cuML library.

Author(s)

Yitao Li <yitao@rstudio.com>

cuda_ml_agglomerative_clustering

Perform Single-Linkage Agglomerative Clustering.

Description

Recursively merge the pair of clusters that minimally increases a given linkage distance.

Usage

cuda_ml_agglomerative_clustering(
x,
n_clusters = 2L,
metric = c("euclidean", "l1", "l2", "manhattan", "cosine"),
connectivity = c("pairwise", "knn"),
n_neighbors = 15L

)

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

n_clusters The number of clusters to find. Default: 2L.
metric Metric used for linkage computation. Must be one of "euclidean", "l1", "l2",

"manhattan", "cosine". If connectivity is "knn" then only "euclidean" is ac-
cepted. Default: "euclidean".

connectivity The type of connectivity matrix to compute. Must be one of "pairwise", "knn".
Default: "pairwise". - ’pairwise’ will compute the entire fully-connected graph
of pairwise distances between each set of points. This is the fastest to compute
and can be very fast for smaller datasets but requires O(n^2) space. - ’knn’
will sparsify the fully-connected connectivity matrix to save memory and enable
much larger inputs. "n_neighbors" will control the amount of memory used and
the graph will be connected automatically in the event "n_neighbors" was not
large enough to connect it.

n_neighbors The number of neighbors to compute when connectivity is "knn". Default:
15L.

4 cuda_ml_can_predict_class_probabilities

Value

A clustering object with the following attributes: "n_clusters": The number of clusters found by the
algorithm. "children": The children of each non-leaf node. Values less than nrow(x) correspond to
leaves of the tree which are the original samples. children[i + 1][1] and children[i + 1][2]
were merged to form node (nrow(x) + i) in the i-th iteration. "labels": cluster label of each data
point.

Examples

library(cuda.ml)
library(MASS)
library(magrittr)
library(purrr)

set.seed(0L)

gen_pts <- function() {
centers <- list(c(1000, 1000), c(-1000, -1000), c(-1000, 1000))
pts <- centers %>%
map(~ mvrnorm(50, mu = .x, Sigma = diag(2)))

rlang::exec(rbind, !!!pts) %>% as.matrix()
}

clust <- cuda_ml_agglomerative_clustering(
x = gen_pts(),
metric = "euclidean",
n_clusters = 3L

)

print(clust$labels)

cuda_ml_can_predict_class_probabilities

Determine whether a CuML model can predict class probabilities.

Description

Given a trained CuML model, return TRUE if the model is a classifier and is capable of outputting
class probabilities as prediction results (e.g., if the model is a KNN or an ensemble classifier),
otherwise return FALSE.

Usage

cuda_ml_can_predict_class_probabilities(model)

Arguments

model A trained CuML model.

cuda_ml_dbscan 5

Value

A logical value indicating whether the model supports outputting class probabilities.

cuda_ml_dbscan Run the DBSCAN clustering algorithm.

Description

Run the DBSCAN (Density-based spatial clustering of applications with noise) clustering algo-
rithm.

Usage

cuda_ml_dbscan(
x,
min_pts,
eps,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")

)

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

min_pts, eps A point ‘p‘ is a core point if at least ‘min_pts‘ are within distance ‘eps‘ from it.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

Value

A list containing the cluster assignments of all data points. A data point not belonging to any cluster
(i.e., "noise") will have NA its cluster assignment.

Examples

library(cuda.ml)
library(magrittr)

gen_pts <- function() {
centroids <- list(c(1000, 1000), c(-1000, -1000), c(-1000, 1000))

pts <- centroids %>%
purrr::map(~ MASS::mvrnorm(10, mu = .x, Sigma = diag(2)))

rlang::exec(rbind, !!!pts)
}

6 cuda_ml_elastic_net

m <- gen_pts()
clusters <- cuda_ml_dbscan(m, min_pts = 5, eps = 3)

print(clusters)

cuda_ml_elastic_net Train a linear model using elastic regression.

Description

Train a linear model with combined L1 and L2 priors as the regularizer.

Usage

cuda_ml_elastic_net(x, ...)

Default S3 method:
cuda_ml_elastic_net(x, ...)

S3 method for class 'data.frame'
cuda_ml_elastic_net(
x,
y,
alpha = 1,
l1_ratio = 0.5,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

S3 method for class 'matrix'
cuda_ml_elastic_net(
x,
y,
alpha = 1,
l1_ratio = 0.5,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

cuda_ml_elastic_net 7

S3 method for class 'formula'
cuda_ml_elastic_net(
formula,
data,
alpha = 1,
l1_ratio = 0.5,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

S3 method for class 'recipe'
cuda_ml_elastic_net(
x,
data,
alpha = 1,
l1_ratio = 0.5,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.
y A numeric vector (for regression) or factor (for classification) of desired re-

sponses.
alpha Multiplier of the penalty term (i.e., the result would become and Ordinary Least

Square model if alpha were set to 0). Default: 1. For numerical reasons, run-
ning elastic regression with alpha set to 0 is not advised. For the alpha-equals-
to-0 scenario, one should use cuda_ml_ols to train an OLS model instead. De-
fault: 1.

l1_ratio The ElasticNet mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the
penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1,
the penalty is a combination of L1 and L2. The penalty term is computed using
the following formula: penalty = alpha * l1_ratio * ||w||_1 + 0.5 * alpha *
(1 - l1_ratio) * ||w||^2_2 where ||w||_1 is the L1 norm of the coefficients, and
||w||_2 is the L2 norm of the coefficients.

8 cuda_ml_elastic_net

max_iter The maximum number of coordinate descent iterations. Default: 1000L.

tol Stop the coordinate descent when the duality gap is below this threshold. De-
fault: 1e-3.

fit_intercept If TRUE, then the model tries to correct for the global mean of the response
variable. If FALSE, then the model expects data to be centered. Default: TRUE.

normalize_input

Ignored when fit_intercept is FALSE. If TRUE, then the predictors will be
normalized to have a L2 norm of 1. Default: FALSE.

selection If "random", then instead of updating coefficients in cyclic order, a random co-
efficient is updated in each iteration. Default: "cyclic".

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

Value

An elastic net regressor that can be used with the ’predict’ S3 generic to make predictions on new
data points.

Examples

library(cuda.ml)

model <- cuda_ml_elastic_net(
formula = mpg ~ ., data = mtcars, alpha = 1e-3, l1_ratio = 0.6

)
cuda_ml_predictions <- predict(model, mtcars)

predictions will be comparable to those from a `glmnet` model with `lambda`
set to 1e-3 and `alpha` set to 0.6
(in `glmnet`, `lambda` is the weight of the penalty term, and `alpha` is
the elastic mixing parameter between L1 and L2 penalties.

library(glmnet)

glmnet_model <- glmnet(
x = as.matrix(mtcars[names(mtcars) != "mpg"]), y = mtcars$mpg,
alpha = 0.6, lambda = 1e-3, nlambda = 1, standardize = FALSE

)

glm_predictions <- predict(
glmnet_model, as.matrix(mtcars[names(mtcars) != "mpg"]),
s = 0

)

print(
all.equal(
as.numeric(glm_predictions),
cuda_ml_predictions$.pred,

cuda_ml_fil_enabled 9

tolerance = 1e-2
)

)

cuda_ml_fil_enabled Determine whether Forest Inference Library (FIL) functionalities are
enabled in the current installation of cuda.ml.

Description

CuML Forest Inference Library (FIL) functionalities (see https://github.com/rapidsai/cuml/tree/main/python/cuml/fil#readme)
will require Treelite C API. If you need FIL to run tree-based model ensemble on GPU, and
fil_enabled() returns FALSE, then please consider installing Treelite and then re-installing cuda.ml.

Usage

cuda_ml_fil_enabled()

Value

A logical value indicating whether the Forest Inference Library (FIL) functionalities are enabled.

Examples

if (cuda_ml_fil_enabled()) {
run GPU-accelerated Forest Inference Library (FIL) functionalities

} else {
message(

"FIL functionalities are disabled in the current installation of ",
"{cuda.ml}. Please reinstall Treelite C library first, and then re-install",
" {cuda.ml} to enable FIL."

)
}

cuda_ml_fil_load_model

Load a XGBoost or LightGBM model file.

Description

Load a XGBoost or LightGBM model file using Treelite. The resulting model object can be used to
perform high-throughput batch inference on new data points using the GPU acceleration function-
ality from the CuML Forest Inference Library (FIL).

10 cuda_ml_fil_load_model

Usage

cuda_ml_fil_load_model(
filename,
mode = c("classification", "regression"),
model_type = c("xgboost", "lightgbm"),
algo = c("auto", "naive", "tree_reorg", "batch_tree_reorg"),
threshold = 0.5,
storage_type = c("auto", "dense", "sparse"),
threads_per_tree = 1L,
n_items = 0L,
blocks_per_sm = 0L

)

Arguments

filename Path to the saved model file.

mode Type of task to be performed by the model. Must be one of "classification",
"regression".

model_type Format of the saved model file. Notice if filename ends with ".json" and
model_type is "xgboost", then cuda.ml will assume the model file is in XG-
Boost JSON (instead of binary) format. Default: "xgboost".

algo Type of the algorithm for inference, must be one of the following. - "auto":
Choose the algorithm automatically. Currently ’batch_tree_reorg’ is used for
dense storage, and ’naive’ for sparse storage. - "naive": Simple inference using
shared memory. - "tree_reorg": Similar to naive but with trees rearranged to
be more coalescing- friendly. - "batch_tree_reorg": Similar to ’tree_reorg’ but
predicting multiple rows per thread block. Default: "auto".

threshold Class probability threshold for classification. Ignored for regression tasks. De-
fault: 0.5.

storage_type In-memory storage format of the FIL model. Must be one of the following. -
"auto": Choose the storage type automatically, - "dense": Create a dense forest,
- "sparse": Create a sparse forest. Requires algo to be ’naive’ or ’auto’.

threads_per_tree

If >1, then have multiple (neighboring) threads infer on the same tree within
a block, which will improve memory bandwith near tree root (but consuming
more shared memory). Default: 1L.

n_items Number of input samples each thread processes. If 0, then choose (up to 4) that
fit into shared memory. Default: 0L.

blocks_per_sm Indicates how CuML should determine the number of thread blocks to lauch for
the inference kernel. - 0: Launches the number of blocks proportional to the
number of data points. - >= 1: Attempts to lauch blocks_per_sm blocks for
each streaming multiprocessor. This will fail if blocks_per_sm blocks result in
more threads than the maximum supported number of threads per GPU. Even if
successful, it is not guaranteed that blocks_per_sm blocks will run on an SM
concurrently.

cuda_ml_inverse_transform 11

Value

A GPU-accelerated FIL model that can be used with the ’predict’ S3 generic to make predictions
on new data points.

Examples

library(cuda.ml)
library(xgboost)

model_path <- file.path(tempdir(), "xgboost.model")

model <- xgboost(
data = as.matrix(mtcars[names(mtcars) != "mpg"]),
label = as.matrix(mtcars["mpg"]),
max.depth = 6,
eta = 1,
nthread = 2,
nrounds = 20,
objective = "reg:squarederror"

)

xgb.save(model, model_path)

model <- cuda_ml_fil_load_model(
model_path,
mode = "regression",
model_type = "xgboost"

)

preds <- predict(model, mtcars[names(mtcars) != "mpg"])

print(preds)

cuda_ml_inverse_transform

Apply the inverse transformation defined by a trained cuML model.

Description

Given a trained cuML model, apply the inverse transformation defined by that model to an input
dataset.

Usage

cuda_ml_inverse_transform(model, x, ...)

12 cuda_ml_kmeans

Arguments

model A model object.
x The dataset to be transformed.
... Additional model-specific parameters (if any).

Value

The transformed data points.

cuda_ml_is_classifier Determine whether a CuML model is a classifier.

Description

Given a trained CuML model, return TRUE if the model is a classifier, otherwise FALSE (e.g., if the
model is a regressor).

Usage

cuda_ml_is_classifier(model)

Arguments

model A trained CuML model.

Value

A logical value indicating whether the model is a classifier.

cuda_ml_kmeans Run the K means clustering algorithm.

Description

Run the K means clustering algorithm.

Usage

cuda_ml_kmeans(
x,
k,
max_iters = 300,
tol = 0,
init_method = c("kmeans++", "random"),
seed = 0L,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")

)

cuda_ml_knn 13

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

k The number of clusters.

max_iters Maximum number of iterations. Default: 300.

tol Relative tolerance with regards to inertia to declare convergence. Default: 0
(i.e., do not use inertia-based stopping criterion).

init_method Method for initializing the centroids. Valid methods include "kmeans++", "ran-
dom", or a matrix of k rows, each row specifying the initial value of a centroid.
Default: "kmeans++".

seed Seed to the random number generator. Default: 0.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

Value

A list containing the cluster assignments and the centroid of each cluster. Each centroid will be a
column within the ‘centroids‘ matrix.

Examples

library(cuda.ml)

kclust <- cuda_ml_kmeans(
iris[names(iris) != "Species"],
k = 3, max_iters = 100

)

print(kclust)

cuda_ml_knn Build a KNN model.

Description

Build a k-nearest-model for classification or regression tasks.

Usage

cuda_ml_knn(x, ...)

Default S3 method:
cuda_ml_knn(x, ...)

S3 method for class 'data.frame'
cuda_ml_knn(

14 cuda_ml_knn

x,
y,
algo = c("brute", "ivfflat", "ivfpq", "ivfsq"),
metric = c("euclidean", "l2", "l1", "cityblock", "taxicab", "manhattan",
"braycurtis", "canberra", "minkowski", "chebyshev", "jensenshannon", "cosine",
"correlation"),

p = 2,
neighbors = 5L,
...

)

S3 method for class 'matrix'
cuda_ml_knn(
x,
y,
algo = c("brute", "ivfflat", "ivfpq", "ivfsq"),
metric = c("euclidean", "l2", "l1", "cityblock", "taxicab", "manhattan",
"braycurtis", "canberra", "minkowski", "chebyshev", "jensenshannon", "cosine",
"correlation"),

p = 2,
neighbors = 5L,
...

)

S3 method for class 'formula'
cuda_ml_knn(
formula,
data,
algo = c("brute", "ivfflat", "ivfpq", "ivfsq"),
metric = c("euclidean", "l2", "l1", "cityblock", "taxicab", "manhattan",
"braycurtis", "canberra", "minkowski", "chebyshev", "jensenshannon", "cosine",
"correlation"),

p = 2,
neighbors = 5L,
...

)

S3 method for class 'recipe'
cuda_ml_knn(
x,
data,
algo = c("brute", "ivfflat", "ivfpq", "ivfsq"),
metric = c("euclidean", "l2", "l1", "cityblock", "taxicab", "manhattan",
"braycurtis", "canberra", "minkowski", "chebyshev", "jensenshannon", "cosine",
"correlation"),

p = 2,
neighbors = 5L,
...

cuda_ml_knn 15

)

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.

y A numeric vector (for regression) or factor (for classification) of desired re-
sponses.

algo The query algorithm to use. Must be one of "brute", "ivfflat", "ivfpq", "ivfsq"
or a KNN algorithm specification constructed using the cuda_ml_knn_algo_*
family of functions. If the algorithm is specified by one of the cuda_ml_knn_algo_*
functions, then values of all required parameters of the algorithm will need to
be specified explicitly. If the algorithm is specified by a character vector, then
parameters for the algorithm are generated automatically.
Descriptions of supported algorithms: - "brute": for brute-force, slow but pro-
duces exact results. - "ivfflat": for inverted file, divide the dataset in partitions
and perform search on relevant partitions only. - "ivfpq": for inverted file and
product quantization (vectors are divided into sub-vectors, and each sub-vector
is encoded using intermediary k-means clusterings to provide partial informa-
tion). - "ivfsq": for inverted file and scalar quantization (vectors components are
quantized into reduced binary representation allowing faster distances calcula-
tions).
Default: "brute".

metric Distance metric to use. Must be one of "euclidean", "l2", "l1", "cityblock", "taxi-
cab", "manhattan", "braycurtis", "canberra", "minkowski", "lp", "chebyshev",
"linf", "jensenshannon", "cosine", "correlation". Default: "euclidean".

p Parameter for the Minkowski metric. If p = 1, then the metric is equivalent to
manhattan distance (l1). If p = 2, the metric is equivalent to euclidean distance
(l2).

neighbors Number of nearest neighbors to query. Default: 5L.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

Value

A KNN model that can be used with the ’predict’ S3 generic to make predictions on new data points.
The model object contains the following: - "knn_index": a GPU pointer to the KNN index. - "algo":
enum value of the algorithm being used for the KNN query. - "metric": enum value of the distance
metric used in KNN computations. - "p": parameter for the Minkowski metric. - "n_samples":
number of input data points. - "n_dims": dimension of each input data point.

16 cuda_ml_knn_algo_ivfflat

Examples

library(cuda.ml)
library(MASS)
library(magrittr)
library(purrr)

set.seed(0L)

centers <- list(c(3, 3), c(-3, -3), c(-3, 3))

gen_pts <- function(cluster_sz) {
pts <- centers %>%
map(~ mvrnorm(cluster_sz, mu = .x, Sigma = diag(2)))

rlang::exec(rbind, !!!pts) %>% as.matrix()
}

gen_labels <- function(cluster_sz) {
seq_along(centers) %>%

sapply(function(x) rep(x, cluster_sz)) %>%
factor()

}

sample_cluster_sz <- 1000
sample_pts <- cbind(

gen_pts(sample_cluster_sz) %>% as.data.frame(),
label = gen_labels(sample_cluster_sz)

)

model <- cuda_ml_knn(label ~ ., sample_pts, algo = "ivfflat", metric = "euclidean")

test_cluster_sz <- 10
test_pts <- gen_pts(test_cluster_sz) %>% as.data.frame()

predictions <- predict(model, test_pts)
print(predictions, n = 30)

cuda_ml_knn_algo_ivfflat

Build a specification for the "ivfflat" KNN query algorithm.

Description

Build a specification of the flat-inverted-file KNN query algorithm, with all required parameters
specified explicitly.

Usage

cuda_ml_knn_algo_ivfflat(nlist, nprobe)

cuda_ml_knn_algo_ivfpq 17

Arguments

nlist Number of cells to partition dataset into.

nprobe At query time, the number of cells used for approximate nearest neighbor search.

Value

An object encapsulating all required parameters of the "ivfflat" KNN query algorithm.

cuda_ml_knn_algo_ivfpq

Build a specification for the "ivfpq" KNN query algorithm.

Description

Build a specification of the inverted-file-product-quantization KNN query algorithm, with all re-
quired parameters specified explicitly.

Usage

cuda_ml_knn_algo_ivfpq(
nlist,
nprobe,
m,
n_bits,
use_precomputed_tables = FALSE

)

Arguments

nlist Number of cells to partition dataset into.

nprobe At query time, the number of cells used for approximate nearest neighbor search.

m Number of subquantizers.

n_bits Bits allocated per subquantizer.

use_precomputed_tables

Whether to use precomputed tables.

Value

An object encapsulating all required parameters of the "ivfpq" KNN query algorithm.

18 cuda_ml_lasso

cuda_ml_knn_algo_ivfsq

Build a specification for the "ivfsq" KNN query algorithm.

Description

Build a specification of the inverted-file-scalar-quantization KNN query algorithm, with all required
parameters specified explicitly.

Usage

cuda_ml_knn_algo_ivfsq(
nlist,
nprobe,
qtype = c("QT_8bit", "QT_4bit", "QT_8bit_uniform", "QT_4bit_uniform", "QT_fp16",

"QT_8bit_direct", "QT_6bit"),
encode_residual = FALSE

)

Arguments

nlist Number of cells to partition dataset into.

nprobe At query time, the number of cells used for approximate nearest neighbor search.

qtype Quantizer type. Must be one of "QT_8bit", "QT_4bit", "QT_8bit_uniform",
"QT_4bit_uniform", "QT_fp16", "QT_8bit_direct", "QT_6bit".

encode_residual

Whether to encode residuals.

Value

An object encapsulating all required parameters of the "ivfsq" KNN query algorithm.

cuda_ml_lasso Train a linear model using LASSO regression.

Description

Train a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) regression.

cuda_ml_lasso 19

Usage

cuda_ml_lasso(x, ...)

Default S3 method:
cuda_ml_lasso(x, ...)

S3 method for class 'data.frame'
cuda_ml_lasso(
x,
y,
alpha = 1,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

S3 method for class 'matrix'
cuda_ml_lasso(
x,
y,
alpha = 1,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

S3 method for class 'formula'
cuda_ml_lasso(
formula,
data,
alpha = 1,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

S3 method for class 'recipe'
cuda_ml_lasso(
x,

20 cuda_ml_lasso

data,
alpha = 1,
max_iter = 1000L,
tol = 0.001,
fit_intercept = TRUE,
normalize_input = FALSE,
selection = c("cyclic", "random"),
...

)

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.

y A numeric vector (for regression) or factor (for classification) of desired re-
sponses.

alpha Multiplier of the L1 penalty term (i.e., the result would become and Ordinary
Least Square model if alpha were set to 0). Default: 1.

max_iter The maximum number of coordinate descent iterations. Default: 1000L.

tol Stop the coordinate descent when the duality gap is below this threshold. De-
fault: 1e-3.

fit_intercept If TRUE, then the model tries to correct for the global mean of the response
variable. If FALSE, then the model expects data to be centered. Default: TRUE.

normalize_input

Ignored when fit_intercept is FALSE. If TRUE, then the predictors will be
normalized to have a L2 norm of 1. Default: FALSE.

selection If "random", then instead of updating coefficients in cyclic order, a random co-
efficient is updated in each iteration. Default: "cyclic".

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

Value

A LASSO regressor that can be used with the ’predict’ S3 generic to make predictions on new data
points.

Examples

library(cuda.ml)

model <- cuda_ml_lasso(formula = mpg ~ ., data = mtcars, alpha = 1e-3)

cuda_ml_logistic_reg 21

cuda_ml_predictions <- predict(model, mtcars)

predictions will be comparable to those from a `glmnet` model with `lambda`
set to 1e-3 and `alpha` set to 1
(in `glmnet`, `lambda` is the weight of the penalty term, and `alpha` is
the elastic mixing parameter between L1 and L2 penalties.

library(glmnet)

glmnet_model <- glmnet(
x = as.matrix(mtcars[names(mtcars) != "mpg"]), y = mtcars$mpg,
alpha = 1, lambda = 1e-3, nlambda = 1, standardize = FALSE

)

glm_predictions <- predict(
glmnet_model, as.matrix(mtcars[names(mtcars) != "mpg"]),
s = 0

)

print(
all.equal(
as.numeric(glm_predictions),
cuda_ml_predictions$.pred,
tolerance = 1e-2

)
)

cuda_ml_logistic_reg Train a logistic regression model.

Description

Train a logistic regression model using Quasi-Newton (QN) algorithms (i.e., Orthant-Wise Limited
Memory Quasi-Newton (OWL-QN) if there is L1 regularization, Limited Memory BFGS (L-BFGS)
otherwise).

Usage

cuda_ml_logistic_reg(x, ...)

Default S3 method:
cuda_ml_logistic_reg(x, ...)

S3 method for class 'data.frame'
cuda_ml_logistic_reg(
x,
y,
fit_intercept = TRUE,
penalty = c("l2", "l1", "elasticnet", "none"),

22 cuda_ml_logistic_reg

tol = 1e-04,
C = 1,
class_weight = NULL,
sample_weight = NULL,
max_iters = 1000L,
linesearch_max_iters = 50L,
l1_ratio = NULL,
...

)

S3 method for class 'matrix'
cuda_ml_logistic_reg(
x,
y,
fit_intercept = TRUE,
penalty = c("l2", "l1", "elasticnet", "none"),
tol = 1e-04,
C = 1,
class_weight = NULL,
sample_weight = NULL,
max_iters = 1000L,
linesearch_max_iters = 50L,
l1_ratio = NULL,
...

)

S3 method for class 'formula'
cuda_ml_logistic_reg(
formula,
data,
fit_intercept = TRUE,
penalty = c("l2", "l1", "elasticnet", "none"),
tol = 1e-04,
C = 1,
class_weight = NULL,
sample_weight = NULL,
max_iters = 1000L,
linesearch_max_iters = 50L,
l1_ratio = NULL,
...

)

S3 method for class 'recipe'
cuda_ml_logistic_reg(
x,
data,
fit_intercept = TRUE,
penalty = c("l2", "l1", "elasticnet", "none"),

cuda_ml_logistic_reg 23

tol = 1e-04,
C = 1,
class_weight = NULL,
sample_weight = NULL,
max_iters = 1000L,
linesearch_max_iters = 50L,
l1_ratio = NULL,
...

)

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.
y A numeric vector (for regression) or factor (for classification) of desired re-

sponses.
fit_intercept If TRUE, then the model tries to correct for the global mean of the response

variable. If FALSE, then the model expects data to be centered. Default: TRUE.
penalty The penalty type, must be one of "none", "l1", "l2", "elasticnet". If "none" or

"l2" is selected, then L-BFGS solver will be used. If "l1" is selected, solver
OWL-QN will be used. If "elasticnet" is selected, OWL-QN will be used if
l1_ratio > 0, otherwise L-BFGS will be used. Default: "l2".

tol Tolerance for stopping criteria. Default: 1e-4.
C Inverse of regularization strength; must be a positive float. Default: 1.0.
class_weight If NULL, then each class has equal weight of 1. If class_weight is set to

"balanced", then weights will be inversely proportional to class frequencies
in the input data. If otherwise, then class_weight must be a named numeric
vector of weight values, with names being class labels. If class_weight is
not NULL, then each entry in sample_weight will be adjusted by multiplying its
original value with the class weight of the corresponding sample’s class. De-
fault: NULL.

sample_weight Array of weights assigned to individual samples. If NULL, then each sample has
an equal weight of 1. Default: NULL.

max_iters Maximum number of solver iterations. Default: 1000L.
linesearch_max_iters

Max number of linesearch iterations per outer iteration used in the LBFGS- and
OWL- QN solvers. Default: 50L.

l1_ratio The Elastic-Net mixing parameter, must NULL or be within the range of [0, 1].
Default: NULL.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

24 cuda_ml_ols

Examples

library(cuda.ml)

X <- scale(as.matrix(iris[names(iris) != "Species"]))
y <- iris$Species

model <- cuda_ml_logistic_reg(X, y, max_iters = 100)
predictions <- predict(model, X)

NOTE: if we were only performing binary classifications (e.g., by having
`iris_data <- iris %>% mutate(Species = (Species == "setosa"))`), then the
above would be conceptually equivalent to the following:
#
iris_data <- iris %>% mutate(Species = (Species == "setosa"))
model <- glm(
Species ~ ., data = iris_data, family = binomial(link = "logit"),
control = glm.control(epsilon = 1e-8, maxit = 100)
)
#
predict(model, iris_data, type = "response")

cuda_ml_ols Train a OLS model.

Description

Train an Ordinary Least Square (OLS) model for regression tasks.

Usage

cuda_ml_ols(x, ...)

Default S3 method:
cuda_ml_ols(x, ...)

S3 method for class 'data.frame'
cuda_ml_ols(
x,
y,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

S3 method for class 'matrix'
cuda_ml_ols(
x,

cuda_ml_ols 25

y,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

S3 method for class 'formula'
cuda_ml_ols(
formula,
data,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

S3 method for class 'recipe'
cuda_ml_ols(
x,
data,
method = c("svd", "eig", "qr"),
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.

y A numeric vector (for regression) or factor (for classification) of desired re-
sponses.

method Must be one of "svd", "eig", "qr".
- "svd": compute SVD decomposition using Jacobi iterations. - "eig": use an
eigendecomposition of the covariance matrix. - "qr": use the QR decomposition
algorithm and solve ‘Rx = Q^T y‘.
If the number of features is larger than the sample size, then the "svd" algorithm
will be force-selected because it is the only algorithm that can support this type
of scenario.
Default: "svd".

fit_intercept If TRUE, then the model tries to correct for the global mean of the response
variable. If FALSE, then the model expects data to be centered. Default: TRUE.

26 cuda_ml_pca

normalize_input

Ignored when fit_intercept is FALSE. If TRUE, then the predictors will be
normalized to have a L2 norm of 1. Default: FALSE.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

Value

A OLS regressor that can be used with the ’predict’ S3 generic to make predictions on new data
points.

Examples

library(cuda.ml)

model <- cuda_ml_ols(formula = mpg ~ ., data = mtcars, method = "qr")
predictions <- predict(model, mtcars[names(mtcars) != "mpg"])

predictions will be comparable to those from a `stats::lm` model
lm_model <- stats::lm(formula = mpg ~ ., data = mtcars, method = "qr")
lm_predictions <- predict(lm_model, mtcars[names(mtcars) != "mpg"])

print(
all.equal(
as.numeric(lm_predictions),
predictions$.pred,
tolerance = 1e-3

)
)

cuda_ml_pca Perform principal component analysis.

Description

Compute principal component(s) of the input data. Each feature from the input will be mean-
centered (but not scaled) before the SVD computation takes place.

Usage

cuda_ml_pca(
x,
n_components = NULL,
eig_algo = c("dq", "jacobi"),
tol = 1e-07,
n_iters = 15L,

cuda_ml_pca 27

whiten = FALSE,
transform_input = TRUE,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")

)

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

n_components Number of principal component(s) to keep. Default: min(nrow(x), ncol(x)).

eig_algo Eigen decomposition algorithm to be applied to the covariance matrix. Valid
choices are "dq" (divid-and-conquer method for symmetric matrices) and "ja-
cobi" (the Jacobi method for symmetric matrices). Default: "dq".

tol Tolerance for singular values computed by the Jacobi method. Default: 1e-7.

n_iters Maximum number of iterations for the Jacobi method. Default: 15.

whiten If TRUE, then de-correlate all components, making each component have unit
variance and removing multi-collinearity. Default: FALSE.

transform_input

If TRUE, then compute an approximate representation of the input data. Default:
TRUE.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

Value

A PCA model object with the following attributes: - "components": a matrix of n_components rows
containing the top principal components. - "explained_variance": amount of variance within the in-
put data explained by each component. - "explained_variance_ratio": fraction of variance within the
input data explained by each component. - "singular_values": singular values (non-negative) cor-
responding to the top principal components. - "mean": the column wise mean of x which was used
to mean-center x first. - "transformed_data": (only present if "transform_input" is set to TRUE) an
approximate representation of input data based on principal components. - "pca_params": opaque
pointer to PCA parameters which will be used for performing inverse transforms.

The model object can be used as input to the inverse_transform() function to map a representation
based on principal components back to the original feature space.

Examples

library(cuda.ml)

iris.pca <- cuda_ml_pca(iris[1:4], n_components = 3)
print(iris.pca)

28 cuda_ml_rand_forest

cuda_ml_rand_forest Train a random forest model.

Description

Train a random forest model for classification or regression tasks.

Usage

cuda_ml_rand_forest(x, ...)

Default S3 method:
cuda_ml_rand_forest(x, ...)

S3 method for class 'data.frame'
cuda_ml_rand_forest(
x,
y,
mtry = NULL,
trees = NULL,
min_n = 2L,
bootstrap = TRUE,
max_depth = 16L,
max_leaves = Inf,
max_predictors_per_note_split = NULL,
n_bins = 128L,
min_samples_leaf = 1L,
split_criterion = NULL,
min_impurity_decrease = 0,
max_batch_size = 128L,
n_streams = 8L,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

S3 method for class 'matrix'
cuda_ml_rand_forest(
x,
y,
mtry = NULL,
trees = NULL,
min_n = 2L,
bootstrap = TRUE,
max_depth = 16L,
max_leaves = Inf,
max_predictors_per_note_split = NULL,
n_bins = 128L,

cuda_ml_rand_forest 29

min_samples_leaf = 1L,
split_criterion = NULL,
min_impurity_decrease = 0,
max_batch_size = 128L,
n_streams = 8L,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

S3 method for class 'formula'
cuda_ml_rand_forest(
formula,
data,
mtry = NULL,
trees = NULL,
min_n = 2L,
bootstrap = TRUE,
max_depth = 16L,
max_leaves = Inf,
max_predictors_per_note_split = NULL,
n_bins = 128L,
min_samples_leaf = 1L,
split_criterion = NULL,
min_impurity_decrease = 0,
max_batch_size = 128L,
n_streams = 8L,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

S3 method for class 'recipe'
cuda_ml_rand_forest(
x,
data,
mtry = NULL,
trees = NULL,
min_n = 2L,
bootstrap = TRUE,
max_depth = 16L,
max_leaves = Inf,
max_predictors_per_note_split = NULL,
n_bins = 128L,
min_samples_leaf = 1L,
split_criterion = NULL,
min_impurity_decrease = 0,
max_batch_size = 128L,
n_streams = 8L,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),

30 cuda_ml_rand_forest

...
)

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.

y A numeric vector (for regression) or factor (for classification) of desired re-
sponses.

mtry The number of predictors that will be randomly sampled at each split when cre-
ating the tree models. Default: the square root of the total number of predictors.

trees An integer for the number of trees contained in the ensemble. Default: 100L.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further. Default: 2L.

bootstrap Whether to perform bootstrap. If TRUE, each tree in the forest is built on a
bootstrapped sample with replacement. If FALSE, the whole dataset is used to
build each tree.

max_depth Maximum tree depth. Default: 16L.

max_leaves Maximum leaf nodes per tree. Soft constraint. Default: Inf (unlimited).
max_predictors_per_note_split

Number of predictor to consider per node split. Default: square root of the total
number predictors.

n_bins Number of bins used by the split algorithm. Default: 128L.
min_samples_leaf

The minimum number of data points in each leaf node. Default: 1L.
split_criterion

The criterion used to split nodes, can be "gini" or "entropy" for classifications,
and "mse" or "mae" for regressions. Default: "gini" for classification; "mse" for
regression.

min_impurity_decrease

Minimum decrease in impurity requried for node to be spilt. Default: 0.

max_batch_size Maximum number of nodes that can be processed in a given batch. Default:
128L.

n_streams Number of CUDA streams to use for building trees. Default: 8L.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

cuda_ml_rand_proj 31

Value

A random forest classifier / regressor object that can be used with the ’predict’ S3 generic to make
predictions on new data points.

Examples

library(cuda.ml)

Classification

model <- cuda_ml_rand_forest(
formula = Species ~ .,
data = iris,
trees = 100

)

predictions <- predict(model, iris[names(iris) != "Species"])

Regression

model <- cuda_ml_rand_forest(
formula = mpg ~ .,
data = mtcars,
trees = 100

)

predictions <- predict(model, mtcars[names(mtcars) != "mpg"])

cuda_ml_rand_proj Random projection for dimensionality reduction.

Description

Generate a random projection matrix for dimensionality reduction, and optionally transform input
data to a projection in a lower dimension space using the generated random matrix.

Usage

cuda_ml_rand_proj(
x,
n_components = NULL,
eps = 0.1,
gaussian_method = TRUE,
density = NULL,
transform_input = TRUE,
seed = 0L

)

32 cuda_ml_ridge

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

n_components Dimensionality of the target projection space. If NULL, then the parameter is
deducted using the Johnson-Lindenstrauss lemma, taking into consideration the
number of samples and the eps parameter. Default: NULL.

eps Error tolerance during projection. Default: 0.1.
gaussian_method

If TRUE, then use the Gaussian random projection method. Otherwise, use the
sparse random projection method. See https://en.wikipedia.org/wiki/Random_projection
for details. Default: TRUE.

density Ratio of non-zero component in the random projection matrix. If NULL, then
the value is set to the minimum density as recommended by Ping Li et al.: 1 /
sqrt(n_features). Default: NULL.

transform_input

Whether to project input data onto a lower dimension space using the random
matrix. Default: TRUE.

seed Seed for the pseudorandom number generator. Default: 0L.

Value

A context object containing GPU pointer to a random matrix that can be used as input to the
cuda_ml_transform() function. If transform_input is set to TRUE, then the context object
will also contain a "transformed_data" attribute containing the lower dimensional projection of the
input data.

Examples

library(cuda.ml)
library(mlbench)

data(Vehicle)
vehicle_data <- Vehicle[order(Vehicle$Class), which(names(Vehicle) != "Class")]

model <- cuda_ml_rand_proj(vehicle_data, n_components = 4)

set.seed(0L)
print(kmeans(model$transformed_data, centers = 4, iter.max = 1000))

cuda_ml_ridge Train a linear model using ridge regression.

Description

Train a linear model with L2 regularization.

cuda_ml_ridge 33

Usage

cuda_ml_ridge(x, ...)

Default S3 method:
cuda_ml_ridge(x, ...)

S3 method for class 'data.frame'
cuda_ml_ridge(
x,
y,
alpha = 1,
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

S3 method for class 'matrix'
cuda_ml_ridge(
x,
y,
alpha = 1,
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

S3 method for class 'formula'
cuda_ml_ridge(
formula,
data,
alpha = 1,
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

S3 method for class 'recipe'
cuda_ml_ridge(
x,
data,
alpha = 1,
fit_intercept = TRUE,
normalize_input = FALSE,
...

)

34 cuda_ml_ridge

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.

y A numeric vector (for regression) or factor (for classification) of desired re-
sponses.

alpha Multiplier of the L2 penalty term (i.e., the result would become and Ordinary
Least Square model if alpha were set to 0). Default: 1.

fit_intercept If TRUE, then the model tries to correct for the global mean of the response
variable. If FALSE, then the model expects data to be centered. Default: TRUE.

normalize_input

Ignored when fit_intercept is FALSE. If TRUE, then the predictors will be
normalized to have a L2 norm of 1. Default: FALSE.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

Value

A ridge regressor that can be used with the ’predict’ S3 generic to make predictions on new data
points.

Examples

library(cuda.ml)

model <- cuda_ml_ridge(formula = mpg ~ ., data = mtcars, alpha = 1e-3)
cuda_ml_predictions <- predict(model, mtcars[names(mtcars) != "mpg"])

predictions will be comparable to those from a `glmnet` model with `lambda`
set to 2e-3 and `alpha` set to 0
(in `glmnet`, `lambda` is the weight of the penalty term, and `alpha` is
the elastic mixing parameter between L1 and L2 penalties.

library(glmnet)

glmnet_model <- glmnet(
x = as.matrix(mtcars[names(mtcars) != "mpg"]), y = mtcars$mpg,
alpha = 0, lambda = 2e-3, nlambda = 1, standardize = FALSE

)

glmnet_predictions <- predict(
glmnet_model, as.matrix(mtcars[names(mtcars) != "mpg"]),
s = 0

)

cuda_ml_serialize 35

print(
all.equal(
as.numeric(glmnet_predictions),
cuda_ml_predictions$.pred,
tolerance = 1e-3

)
)

cuda_ml_serialize Serialize a CuML model

Description

Given a CuML model, serialize its state into a connection.

Usage

cuda_ml_serialize(model, connection = NULL, ...)

cuda_ml_serialise(model, connection = NULL, ...)

Arguments

model The model object.

connection An open connection or NULL. If NULL, then the model state is serialized to a raw
vector. Default: NULL.

... Additional arguments to base::serialize().

Value

NULL unless connection is NULL, in which case the serialized model state is returned as a raw
vector.

See Also

serialize

36 cuda_ml_sgd

cuda_ml_sgd Train a MBSGD linear model.

Description

Train a linear model using mini-batch stochastic gradient descent.

Usage

cuda_ml_sgd(x, ...)

Default S3 method:
cuda_ml_sgd(x, ...)

S3 method for class 'data.frame'
cuda_ml_sgd(
x,
y,
fit_intercept = TRUE,
loss = c("squared_loss", "log", "hinge"),
penalty = c("none", "l1", "l2", "elasticnet"),
alpha = 1e-04,
l1_ratio = 0.5,
epochs = 1000L,
tol = 0.001,
shuffle = TRUE,
learning_rate = c("constant", "invscaling", "adaptive"),
eta0 = 0.001,
power_t = 0.5,
batch_size = 32L,
n_iters_no_change = 5L,
...

)

S3 method for class 'matrix'
cuda_ml_sgd(
x,
y,
fit_intercept = TRUE,
loss = c("squared_loss", "log", "hinge"),
penalty = c("none", "l1", "l2", "elasticnet"),
alpha = 1e-04,
l1_ratio = 0.5,
epochs = 1000L,
tol = 0.001,
shuffle = TRUE,
learning_rate = c("constant", "invscaling", "adaptive"),

cuda_ml_sgd 37

eta0 = 0.001,
power_t = 0.5,
batch_size = 32L,
n_iters_no_change = 5L,
...

)

S3 method for class 'formula'
cuda_ml_sgd(
formula,
data,
fit_intercept = TRUE,
loss = c("squared_loss", "log", "hinge"),
penalty = c("none", "l1", "l2", "elasticnet"),
alpha = 1e-04,
l1_ratio = 0.5,
epochs = 1000L,
tol = 0.001,
shuffle = TRUE,
learning_rate = c("constant", "invscaling", "adaptive"),
eta0 = 0.001,
power_t = 0.5,
batch_size = 32L,
n_iters_no_change = 5L,
...

)

S3 method for class 'recipe'
cuda_ml_sgd(
x,
data,
fit_intercept = TRUE,
loss = c("squared_loss", "log", "hinge"),
penalty = c("none", "l1", "l2", "elasticnet"),
alpha = 1e-04,
l1_ratio = 0.5,
epochs = 1000L,
tol = 0.001,
shuffle = TRUE,
learning_rate = c("constant", "invscaling", "adaptive"),
eta0 = 0.001,
power_t = 0.5,
batch_size = 32L,
n_iters_no_change = 5L,
...

)

38 cuda_ml_sgd

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.

y A numeric vector (for regression) or factor (for classification) of desired re-
sponses.

fit_intercept If TRUE, then the model tries to correct for the global mean of the response
variable. If FALSE, then the model expects data to be centered. Default: TRUE.

loss Loss function, must be one of "squared_loss", "log", "hinge".

penalty Type of regularization to perform, must be one of "none", "l1", "l2", "elasticnet".
- "none": no regularization. - "l1": perform regularization based on the L1-norm
(LASSO) which tries to minimize the sum of the absolute values of the coeffi-
cients. - "l2": perform regularization based on the L2 norm (Ridge) which tries
to minimize the sum of the square of the coefficients. - "elasticnet": perform the
Elastic Net regularization which is based on the weighted averable of L1 and L2
norms. Default: "none".

alpha Multiplier of the penalty term. Default: 1e-4.

l1_ratio The ElasticNet mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the
penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1,
the penalty is a combination of L1 and L2. The penalty term is computed using
the following formula: penalty = alpha * l1_ratio * ||w||_1 + 0.5 * alpha *
(1 - l1_ratio) * ||w||^2_2 where ||w||_1 is the L1 norm of the coefficients, and
||w||_2 is the L2 norm of the coefficients.

epochs The number of times the model should iterate through the entire dataset during
training. Default: 1000L.

tol Threshold for stopping training. Training will stop if (loss in current epoch) >
(loss in previous epoch) - tol. Default: 1e-3.

shuffle Whether to shuffles the training data after each epoch. Default: True.

learning_rate Must be one of "constant", "invscaling", "adaptive".
- "constant": the learning rate will be kept constant. - "invscaling": (learning
rate) = (initial learning rate) / pow(t, power_t) where t is the number of epochs
and power_t is a tunable parameter of this model. - "adaptive": (learning rate)
= (initial learning rate) as long as the training loss keeps decreasing. Each time
the last n_iter_no_change consecutive epochs fail to decrease the training loss
by tol, the current learning rate is divided by 5. Default: "constant".

eta0 The initial learning rate. Default: 1e-3.

power_t The exponent used in the invscaling learning rate calculations.

batch_size The number of samples that will be included in each batch. Default: 32L.
n_iters_no_change

The maximum number of epochs to train if there is no imporvement in the
model. Default: 5.

cuda_ml_svm 39

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

Value

A linear model that can be used with the ’predict’ S3 generic to make predictions on new data
points.

Examples

library(cuda.ml)

model <- cuda_ml_sgd(
mpg ~ ., mtcars,
batch_size = 4L, epochs = 50000L,
learning_rate = "adaptive", eta0 = 1e-5,
penalty = "l2", alpha = 1e-5, tol = 1e-6,
n_iters_no_change = 10L

)

preds <- predict(model, mtcars[names(mtcars) != "mpg"])
print(all.equal(preds$.pred, mtcars$mpg, tolerance = 0.09))

cuda_ml_svm Train a SVM model.

Description

Train a Support Vector Machine model for classification or regression tasks.

Usage

cuda_ml_svm(x, ...)

Default S3 method:
cuda_ml_svm(x, ...)

S3 method for class 'data.frame'
cuda_ml_svm(
x,
y,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,

40 cuda_ml_svm

tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

S3 method for class 'matrix'
cuda_ml_svm(
x,
y,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,
tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

S3 method for class 'formula'
cuda_ml_svm(
formula,
data,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,
tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

cuda_ml_svm 41

S3 method for class 'recipe'
cuda_ml_svm(
x,
data,
cost = 1,
kernel = c("rbf", "tanh", "polynomial", "linear"),
gamma = NULL,
coef0 = 0,
degree = 3L,
tol = 0.001,
max_iter = NULL,
nochange_steps = 1000L,
cache_size = 1024,
epsilon = 0.1,
sample_weights = NULL,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

Arguments

x Depending on the context:
* A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__
specifying a set of preprocessing steps * created from [recipes::recipe()]. * A
__formula__ specifying the predictors and the outcome.

... Optional arguments; currently unused.

y A numeric vector (for regression) or factor (for classification) of desired re-
sponses.

cost A positive number for the cost of predicting a sample within or on the wrong
side of the margin. Default: 1.

kernel Type of the SVM kernel function (must be one of "rbf", "tanh", "polynomial",
or "linear"). Default: "rbf".

gamma The gamma coefficient (only relevant to polynomial, RBF, and tanh kernel func-
tions, see explanations below). Default: 1 / (num features).
The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-
x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNO-
MIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2)
= <x_1,x_2>, where < , > denotes the dot product.

coef0 The 0th coefficient (only applicable to polynomial and tanh kernel functions, see
explanations below). Default: 0.
The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-
x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNO-
MIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2)
= <x_1,x_2>, where < , > denotes the dot product.

degree Degree of the polynomial kernel function (note: not applicable to other kernel
types, see explanations below). Default: 3.

42 cuda_ml_svm

The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-
x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNO-
MIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2)
= <x_1,x_2>, where < , > denotes the dot product.

tol Tolerance to stop fitting. Default: 1e-3.

max_iter Maximum number of outer iterations in SmoSolver. Default: 100 * (num sam-
ples).

nochange_steps Number of steps with no change w.r.t convergence. Default: 1000.

cache_size Size of kernel cache (MiB) in device memory. Default: 1024.

epsilon Espsilon parameter of the epsilon-SVR model. There is no penalty for points
that are predicted within the epsilon-tube around the target values. Please note
this parameter is only relevant for regression tasks. Default: 0.1.

sample_weights Optional weight assigned to each input data point.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

formula A formula specifying the outcome terms on the left-hand side, and the predictor
terms on the right-hand side.

data When a __recipe__ or __formula__ is used, data is specified as a __data frame__
containing the predictors and (if applicable) the outcome.

Value

A SVM classifier / regressor object that can be used with the ’predict’ S3 generic to make predic-
tions on new data points.

Examples

library(cuda.ml)

Classification

model <- cuda_ml_svm(
formula = Species ~ .,
data = iris,
kernel = "rbf"

)

predictions <- predict(model, iris[names(iris) != "Species"])

Regression

model <- cuda_ml_svm(
formula = mpg ~ .,
data = mtcars,
kernel = "rbf"

)

predictions <- predict(model, mtcars)

cuda_ml_transform 43

cuda_ml_transform Transform data using a trained cuML model.

Description

Given a trained cuML model, transform an input dataset using that model.

Usage

cuda_ml_transform(model, x, ...)

Arguments

model A model object.

x The dataset to be transformed.

... Additional model-specific parameters (if any).

Value

The transformed data points.

cuda_ml_tsne t-distributed Stochastic Neighbor Embedding.

Description

t-distributed Stochastic Neighbor Embedding (TSNE) for visualizing high- dimensional data.

Usage

cuda_ml_tsne(
x,
n_components = 2L,
n_neighbors = ceiling(3 * perplexity),
method = c("barnes_hut", "fft", "exact"),
angle = 0.5,
n_iter = 1000L,
learning_rate = 200,
learning_rate_method = c("adaptive", "none"),
perplexity = 30,
perplexity_max_iter = 100L,
perplexity_tol = 1e-05,
early_exaggeration = 12,
late_exaggeration = 1,
exaggeration_iter = 250L,

44 cuda_ml_tsne

min_grad_norm = 1e-07,
pre_momentum = 0.5,
post_momentum = 0.8,
square_distances = TRUE,
seed = NULL,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")

)

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

n_components Dimension of the embedded space.

n_neighbors The number of datapoints to use in the attractive forces. Default: ceiling(3 *
perplexity).

method T-SNE method, must be one of "barnes_hut", "fft", "exact". The "exact" method
will be more accurate but slower. Both "barnes_hut" and "fft" methods are fast
approximations.

angle Valid values are between 0.0 and 1.0, which trade off speed and accuracy, re-
spectively. Generally, these values are set between 0.2 and 0.8. (Barnes-Hut
only.)

n_iter Maximum number of iterations for the optimization. Should be at least 250.
Default: 1000L.

learning_rate Learning rate of the t-SNE algorithm, usually between (10, 1000). If the learning
rate is too high, then t-SNE result could look like a cloud / ball of points.

learning_rate_method

Must be one of "adaptive", "none". If "adaptive", then learning rate, early ex-
aggeration, and perplexity are automatically tuned based on input size. Default:
"adaptive".

perplexity The target value of the conditional distribution’s perplexity (see https://en.wikipedia.org/wiki/T-
distributed_stochastic_neighbor_embedding for details).

perplexity_max_iter

The number of epochs the best Gaussian bands are found for. Default: 100L.

perplexity_tol Stop optimizing the Gaussian bands when the conditional distribution’s perplex-
ity is within this desired tolerance compared to its taget value. Default: 1e-5.

early_exaggeration

Controls the space between clusters. Not critical to tune this. Default: 12.0.
late_exaggeration

Controls the space between clusters. It may be beneficial to increase this slightly
to improve cluster separation. This will be applied after ‘exaggeration_iter‘ it-
erations (FFT only).

exaggeration_iter

Number of exaggeration iterations. Default: 250L.

min_grad_norm If the gradient norm is below this threshold, the optimization will be stopped.
Default: 1e-7.

cuda_ml_tsvd 45

pre_momentum During the exaggeration iteration, more forcefully apply gradients. Default: 0.5.

post_momentum During the late phases, less forcefully apply gradients. Default: 0.8.

square_distances

Whether TSNE should square the distance values.

seed Seed to the psuedorandom number generator. Setting this can make repeated
runs look more similar. Note, however, that this highly parallelized t-SNE im-
plementation is not completely deterministic between runs, even with the same
seed being used for each run. Default: NULL.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

Value

A matrix containing the embedding of the input data in a low- dimensional space, with each row
representing an embedded data point.

Examples

library(cuda.ml)

embedding <- cuda_ml_tsne(iris[1:4], method = "exact")

set.seed(0L)
print(kmeans(embedding, centers = 3))

cuda_ml_tsvd Truncated SVD.

Description

Dimensionality reduction using Truncated Singular Value Decomposition.

Usage

cuda_ml_tsvd(
x,
n_components = 2L,
eig_algo = c("dq", "jacobi"),
tol = 1e-07,
n_iters = 15L,
transform_input = TRUE,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")

)

46 cuda_ml_umap

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

n_components Desired dimensionality of output data. Must be strictly less than ncol(x) (i.e.,
the number of features in input data). Default: 2.

eig_algo Eigen decomposition algorithm to be applied to the covariance matrix. Valid
choices are "dq" (divid-and-conquer method for symmetric matrices) and "ja-
cobi" (the Jacobi method for symmetric matrices). Default: "dq".

tol Tolerance for singular values computed by the Jacobi method. Default: 1e-7.

n_iters Maximum number of iterations for the Jacobi method. Default: 15.
transform_input

If TRUE, then compute an approximate representation of the input data. Default:
TRUE.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

Value

A TSVD model object with the following attributes: - "components": a matrix of n_components
rows to be used for dimensionalitiy reduction on new data points. - "explained_variance": (only
present if "transform_input" is set to TRUE) amount of variance within the input data explained by
each component. - "explained_variance_ratio": (only present if "transform_input" is set to TRUE)
fraction of variance within the input data explained by each component. - "singular_values": The
singular values corresponding to each component. The singular values are equal to the 2-norms of
the n_components variables in the lower-dimensional space. - "tsvd_params": opaque pointer to
TSVD parameters which will be used for performing inverse transforms.

Examples

library(cuda.ml)

iris.tsvd <- cuda_ml_tsvd(iris[1:4], n_components = 2)
print(iris.tsvd)

cuda_ml_umap Uniform Manifold Approximation and Projection (UMAP) for dimen-
sion reduction.

Description

Run the Uniform Manifold Approximation and Projection (UMAP) algorithm to find a low dimen-
sional embedding of the input data that approximates an underlying manifold.

cuda_ml_umap 47

Usage

cuda_ml_umap(
x,
y = NULL,
n_components = 2L,
n_neighbors = 15L,
n_epochs = 500L,
learning_rate = 1,
init = c("spectral", "random"),
min_dist = 0.1,
spread = 1,
set_op_mix_ratio = 1,
local_connectivity = 1L,
repulsion_strength = 1,
negative_sample_rate = 5L,
transform_queue_size = 4,
a = NULL,
b = NULL,
target_n_neighbors = n_neighbors,
target_metric = c("categorical", "euclidean"),
target_weight = 0.5,
transform_input = TRUE,
seed = NULL,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace")

)

Arguments

x The input matrix or dataframe. Each data point should be a row and should
consist of numeric values only.

y An optional numeric vector of target values for supervised dimension reduction.
Default: NULL.

n_components The dimension of the space to embed into. Default: 2.

n_neighbors The size of local neighborhood (in terms of number of neighboring sample
points) used for manifold approximation. Default: 15.

n_epochs The number of training epochs to be used in optimizing the low dimensional
embedding. Default: 500.

learning_rate The initial learning rate for the embedding optimization. Default: 1.0.

init Initialization mode of the low dimensional embedding. Must be one of "spec-
tral", "random". Default: "spectral".

min_dist The effective minimum distance between embedded points. Default: 0.1.

spread The effective scale of embedded points. In combination with min_dist this
determines how clustered/clumped the embedded points are. Default: 1.0.

set_op_mix_ratio

Interpolate between (fuzzy) union and intersection as the set operation used to
combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both

48 cuda_ml_umap

fuzzy set operations use the product t-norm. The value of this parameter should
be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will
use a pure fuzzy intersection. Default: 1.0.

local_connectivity

The local connectivity required – i.e. the number of nearest neighbors that
should be assumed to be connected at a local level. Default: 1.

repulsion_strength

Weighting applied to negative samples in low dimensional embedding optimiza-
tion. Values higher than one will result in greater weight being given to negative
samples. Default: 1.0.

negative_sample_rate

The number of negative samples to select per positive sample in the optimization
process. Default: 5.

transform_queue_size

For transform operations (embedding new points using a trained model this will
control how aggressively to search for nearest neighbors. Default: 4.0.

a, b More specific parameters controlling the embedding. If not set, then these values
are set automatically as determined by min_dist and spread. Default: NULL.

target_n_neighbors

The number of nearest neighbors to use to construct the target simplcial set.
Default: n_neighbors.

target_metric The metric for measuring distance between the actual and and the target val-
ues (y) if using supervised dimension reduction. Must be one of "categorical",
"euclidean". Default: "categorical".

target_weight Weighting factor between data topology and target topology. A value of 0.0
weights entirely on data, a value of 1.0 weights entirely on target. The default
of 0.5 balances the weighting equally between data and target.

transform_input

If TRUE, then compute an approximate representation of the input data. Default:
TRUE.

seed Optional seed for pseudo random number generator. Default: NULL. Setting a
PRNG seed will enable consistency of trained embeddings, allowing for repro-
ducible results to 3 digits of precision, but at the expense of potentially slower
training and increased memory usage. If the PRNG seed is not set, then the
trained embeddings will not be deterministic.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

Value

A UMAP model object that can be used as input to the cuda_ml_transform() function. If transform_input
is set to TRUE, then the model object will contain a "transformed_data" attribute containing the
lower dimensional embedding of the input data.

cuda_ml_unserialize 49

Examples

library(cuda.ml)

model <- cuda_ml_umap(
x = iris[1:4],
y = iris[[5]],
n_components = 2,
n_epochs = 200,
transform_input = TRUE

)

set.seed(0L)
print(kmeans(model$transformed, iter.max = 100, centers = 3))

cuda_ml_unserialize Unserialize a CuML model state

Description

Unserialize a CuML model state into a CuML model object.

Usage

cuda_ml_unserialize(connection, ...)

cuda_ml_unserialise(connection, ...)

Arguments

connection An open connection or a raw vector.

... Additional arguments to base::unserialize().

Value

A unserialized CuML model.

See Also

unserialize

50 cuML_minor_version

cuML_major_version Get the major version of the RAPIDS cuML shared library cuda.ml
was linked to.

Description

Get the major version of the RAPIDS cuML shared library cuda.ml was linked to.

Usage

cuML_major_version()

Value

The major version of the RAPIDS cuML shared library cuda.ml was linked to in a character vector,
or NA_character_ if cuda.ml was not linked to any version of RAPIDS cuML.

Examples

library(cuda.ml)

print(cuML_major_version())

cuML_minor_version Get the minor version of the RAPIDS cuML shared library cuda.ml
was linked to.

Description

Get the minor version of the RAPIDS cuML shared library cuda.ml was linked to.

Usage

cuML_minor_version()

Value

The minor version of the RAPIDS cuML shared library cuda.ml was linked to in a character vector,
or NA_character_ if cuda.ml was not linked to any version of RAPIDS cuML.

Examples

library(cuda.ml)

print(cuML_minor_version())

has_cuML 51

has_cuML Determine whether cuda.ml was linked to a valid version of the
RAPIDS cuML shared library.

Description

Determine whether cuda.ml was linked to a valid version of the RAPIDS cuML shared library.

Usage

has_cuML()

Value

A logical value indicating whether the current installation cuda.ml was linked to a valid version of
the RAPIDS cuML shared library.

Examples

library(cuda.ml)

if (!has_cuML()) {
warning(

"Please install the RAPIDS cuML shared library first, and then re-",
"install {cuda.ml}."

)
}

predict.cuda_ml_fil Make predictions on new data points.

Description

Make predictions on new data points using a FIL model.

Usage

S3 method for class 'cuda_ml_fil'
predict(object, x, output_class_probabilities = FALSE, ...)

52 predict.cuda_ml_knn

Arguments

object A trained CuML model.

x A matrix or dataframe containing new data points.
output_class_probabilities

Whether to output class probabilities. NOTE: setting output_class_probabilities
to TRUE is only valid when the model being applied is a classification model and
supports class probabilities output. CuML classification models supporting class
probabilities include knn, fil, and rand_forest. A warning message will be
emitted if output_class_probabilities is set to TRUE or FALSE but the model
being applied does not support class probabilities output.

... Additional arguments to predict(). Currently unused.

Value

Predictions on new data points.

predict.cuda_ml_knn Make predictions on new data points.

Description

Make predictions on new data points using a CuML KNN model.

Usage

S3 method for class 'cuda_ml_knn'
predict(object, x, output_class_probabilities = NULL, ...)

Arguments

object A trained CuML model.

x A matrix or dataframe containing new data points.
output_class_probabilities

Whether to output class probabilities. NOTE: setting output_class_probabilities
to TRUE is only valid when the model being applied is a classification model and
supports class probabilities output. CuML classification models supporting class
probabilities include knn, fil, and rand_forest. A warning message will be
emitted if output_class_probabilities is set to TRUE or FALSE but the model
being applied does not support class probabilities output.

... Additional arguments to predict(). Currently unused.

Value

Predictions on new data points.

predict.cuda_ml_linear_model 53

predict.cuda_ml_linear_model

Make predictions on new data points.

Description

Make predictions on new data points using a linear model.

Usage

S3 method for class 'cuda_ml_linear_model'
predict(object, x, ...)

Arguments

object A trained CuML model.

x A matrix or dataframe containing new data points.

... Additional arguments to predict(). Currently unused.

Value

Predictions on new data points.

predict.cuda_ml_logistic_reg

Make predictions on new data points.

Description

Make predictions on new data points using a CuML logistic regression model.

Usage

S3 method for class 'cuda_ml_logistic_reg'
predict(object, x, ...)

Arguments

object A trained CuML model.

x A matrix or dataframe containing new data points.

... Additional arguments to predict(). Currently unused.

Value

Predictions on new data points.

54 predict.cuda_ml_rand_forest

predict.cuda_ml_rand_forest

Make predictions on new data points.

Description

Make predictions on new data points using a CuML random forest model.

Usage

S3 method for class 'cuda_ml_rand_forest'
predict(
object,
x,
output_class_probabilities = NULL,
cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"),
...

)

Arguments

object A trained CuML model.

x A matrix or dataframe containing new data points.

output_class_probabilities

Whether to output class probabilities. NOTE: setting output_class_probabilities
to TRUE is only valid when the model being applied is a classification model and
supports class probabilities output. CuML classification models supporting class
probabilities include knn, fil, and rand_forest. A warning message will be
emitted if output_class_probabilities is set to TRUE or FALSE but the model
being applied does not support class probabilities output.

cuML_log_level Log level within cuML library functions. Must be one of "off", "critical", "er-
ror", "warn", "info", "debug", "trace". Default: off.

... Additional arguments to predict(). Currently unused.

Value

Predictions on new data points.

predict.cuda_ml_svm 55

predict.cuda_ml_svm Make predictions on new data points.

Description

Make predictions on new data points using a CuML SVM model.

Usage

S3 method for class 'cuda_ml_svm'
predict(object, x, ...)

Arguments

object A trained CuML model.

x A matrix or dataframe containing new data points.

... Additional arguments to predict(). Currently unused.

Value

Predictions on new data points.

Index

cuda.ml, 3
cuda_ml_agglomerative_clustering, 3
cuda_ml_can_predict_class_probabilities,

4
cuda_ml_dbscan, 5
cuda_ml_elastic_net, 6
cuda_ml_fil_enabled, 9
cuda_ml_fil_load_model, 9
cuda_ml_inverse_transform, 11
cuda_ml_is_classifier, 12
cuda_ml_kmeans, 12
cuda_ml_knn, 13
cuda_ml_knn_algo_ivfflat, 16
cuda_ml_knn_algo_ivfpq, 17
cuda_ml_knn_algo_ivfsq, 18
cuda_ml_lasso, 18
cuda_ml_logistic_reg, 21
cuda_ml_ols, 24
cuda_ml_pca, 26
cuda_ml_rand_forest, 28
cuda_ml_rand_proj, 31
cuda_ml_ridge, 32
cuda_ml_serialise (cuda_ml_serialize),

35
cuda_ml_serialize, 35
cuda_ml_sgd, 36
cuda_ml_svm, 39
cuda_ml_transform, 43
cuda_ml_tsne, 43
cuda_ml_tsvd, 45
cuda_ml_umap, 46
cuda_ml_unserialise

(cuda_ml_unserialize), 49
cuda_ml_unserialize, 49
cuML_major_version, 50
cuML_minor_version, 50

has_cuML, 51

predict.cuda_ml_fil, 51

predict.cuda_ml_knn, 52
predict.cuda_ml_linear_model, 53
predict.cuda_ml_logistic_reg, 53
predict.cuda_ml_rand_forest, 54
predict.cuda_ml_svm, 55

serialize, 35

unserialize, 49

56

	cuda.ml
	cuda_ml_agglomerative_clustering
	cuda_ml_can_predict_class_probabilities
	cuda_ml_dbscan
	cuda_ml_elastic_net
	cuda_ml_fil_enabled
	cuda_ml_fil_load_model
	cuda_ml_inverse_transform
	cuda_ml_is_classifier
	cuda_ml_kmeans
	cuda_ml_knn
	cuda_ml_knn_algo_ivfflat
	cuda_ml_knn_algo_ivfpq
	cuda_ml_knn_algo_ivfsq
	cuda_ml_lasso
	cuda_ml_logistic_reg
	cuda_ml_ols
	cuda_ml_pca
	cuda_ml_rand_forest
	cuda_ml_rand_proj
	cuda_ml_ridge
	cuda_ml_serialize
	cuda_ml_sgd
	cuda_ml_svm
	cuda_ml_transform
	cuda_ml_tsne
	cuda_ml_tsvd
	cuda_ml_umap
	cuda_ml_unserialize
	cuML_major_version
	cuML_minor_version
	has_cuML
	predict.cuda_ml_fil
	predict.cuda_ml_knn
	predict.cuda_ml_linear_model
	predict.cuda_ml_logistic_reg
	predict.cuda_ml_rand_forest
	predict.cuda_ml_svm
	Index

