NEWS
tabnet 0.6.0.9000
Bugfixes
- improve function documentation consistency before translation
- fix ".... is not an exported object from 'namespace:dials'" error when using tune() on tabnet parameters. (#160 @cphaarmeyer)
tabnet 0.6.0 (2024-06-15)
New features
- parsnip models now allow transparently passing case weights through
workflows::add_case_weights()
parameters (#151)
- parsnip models now support
tabnet_model
and from_epoch
parameters (#143)
Bugfixes
- Adapt
tune::finalize_workflow()
test to {parsnip} v1.2 breaking change. (#155)
autoplot()
now position the "has_checkpoint" points correctly when a tabnet_fit()
is continuing a previous training using tabnet_model =
. (#150)
- Explicitely warn that
tabnet_model
option will not be used in tabnet_pretrain()
tasks. (#150)
tabnet 0.5.0 (2023-12-05)
New features
- {tabnet} now allows hierarchical multi-label classification through {data.tree} hierarchical
Node
dataset. (#126)
tabnet_pretrain()
now allows different GLU blocks in GLU layers in encoder and in decoder through the config()
parameters num_idependant_decoder
and num_shared_decoder
(#129)
- Add
reduce_on_plateau
as option for lr_scheduler
at tabnet_config()
(@SvenVw, #120)
- use zeallot internally with %<-% for code readability (#133)
- add FR translation (#131)
tabnet 0.4.0 (2023-05-11)
New features
- Add explicit legend in
autoplot.tabnet_fit()
(#67)
- Improve unsupervised vignette content. (#67)
tabnet_pretrain()
now allows missing values in predictors. (#68)
tabnet_explain()
now works for tabnet_pretrain
models. (#68)
- Allow missing-values values in predictor for unsupervised training. (#68)
- Improve performance of
random_obfuscator()
torch_nn module. (#68)
- Add support for early stopping (#69)
tabnet_fit()
and predict()
now allow missing values in predictors. (#76)
tabnet_config()
now supports a num_workers=
parameters to control parallel dataloading (#83)
- Add a vignette on missing data (#83)
tabnet_config()
now has a flag skip_importance
to skip calculating feature importance (@egillax, #91)
- Export and document
tabnet_nn
- Added
min_grid.tabnet
method for tune
(@cphaarmeyer, #107)
- Added
tabnet_explain()
method for parsnip models (@cphaarmeyer, #108)
tabnet_fit()
and predict()
now allow multi-outcome, all numeric or all factors but not mixed. (#118)
Bugfixes
tabnet_explain()
is now correctly handling missing values in predictors. (#77)
dataloader
can now use num_workers>0
(#83)
- new default values for
batch_size
and virtual_batch_size
improves performance on mid-range devices.
- add default
engine="torch"
to tabnet parsnip model (#114)
- fix
autoplot()
warnings turned into errors with {ggplot2} v3.4 (#113)
tabnet 0.3.0 (2021-10-11)
- Added an
update
method for tabnet models to allow the correct usage of finalize_workflow
(#60).
tabnet 0.2.0 (2021-06-22)
New features
- Allow model fine-tuning through passing a pre-trained model to
tabnet_fit()
(@cregouby, #26)
- Explicit error in case of missing values (@cregouby, #24)
- Better handling of larger datasets when running
tabnet_explain()
.
- Add
tabnet_pretrain()
for unsupervised pretraining (@cregouby, #29)
- Add
autoplot()
of model loss among epochs (@cregouby, #36)
- Added a
config
argument to fit() / pretrain()
so one can pass a pre-made config list. (#42)
- In
tabnet_config()
, new mask_type
option with entmax
additional to default sparsemax
(@cmcmaster1, #48)
- In
tabnet_config()
, loss
now also takes function (@cregouby, #55)
Bugfixes
- Fixed bug in GPU training. (#22)
- Fixed memory leaks when using custom autograd function.
- Batch predictions to avoid OOM error.
Internal improvements
tabnet 0.1.0 (2021-01-14)
- Added a
NEWS.md
file to track changes to the package.