Package: tabnet 0.6.0.9000
tabnet: Fit 'TabNet' Models for Classification and Regression
Implements the 'TabNet' model by Sercan O. Arik et al. (2019) <doi:10.48550/arXiv.1908.07442> with 'Coherent Hierarchical Multi-label Classification Networks' by Giunchiglia et al. <doi:10.48550/arXiv.2010.10151> and provides a consistent interface for fitting and creating predictions. It's also fully compatible with the 'tidymodels' ecosystem.
Authors:
tabnet_0.6.0.9000.tar.gz
tabnet_0.6.0.9000.zip(r-4.5)tabnet_0.6.0.9000.zip(r-4.4)tabnet_0.6.0.9000.zip(r-4.3)
tabnet_0.6.0.9000.tgz(r-4.4-any)tabnet_0.6.0.9000.tgz(r-4.3-any)
tabnet_0.6.0.9000.tar.gz(r-4.5-noble)tabnet_0.6.0.9000.tar.gz(r-4.4-noble)
tabnet_0.6.0.9000.tgz(r-4.4-emscripten)tabnet_0.6.0.9000.tgz(r-4.3-emscripten)
tabnet.pdf |tabnet.html✨
tabnet/json (API)
NEWS
# Install 'tabnet' in R: |
install.packages('tabnet', repos = c('https://mlverse.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mlverse/tabnet/issues
Last updated 2 months agofrom:fe56a04e38. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | OK | Oct 29 2024 |
R-4.5-linux | OK | Oct 29 2024 |
R-4.4-win | OK | Oct 29 2024 |
R-4.4-mac | OK | Oct 29 2024 |
R-4.3-win | OK | Oct 29 2024 |
R-4.3-mac | OK | Oct 29 2024 |
Exports:%>%attention_widthcat_emb_dimcheck_compliant_nodecheckpoint_epochsdecision_widthdrop_lastencoder_activationfeature_reusagelr_schedulermask_typemlp_activationmlp_hidden_multipliermomentumnn_prune_head.tabnet_fitnn_prune_head.tabnet_pretrainnode_to_dfnum_independentnum_independent_decodernum_sharednum_shared_decodernum_stepsoptimizerpenaltytabnettabnet_configtabnet_explaintabnet_fittabnet_nntabnet_pretrainverbosevirtual_batch_size
Dependencies:bitbit64callrclasscliclockcodetoolscolorspacecorocpp11crayondata.tabledata.treedescdiagramdialsDiceDesigndigestdoFuturedplyrfansifarverforeachfurrrfuturefuture.applygenericsggplot2globalsgluegowerGPfitgtablehardhathmsipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalhslifecyclelistenvlubridatemagrittrMASSMatrixmgcvmodelenvmunsellnlmennetnumDerivparallellyparsnippillarpkgconfigprettyunitsprocessxprodlimprogressprogressrpspurrrR6RColorBrewerRcpprecipesrlangrpartrsamplesafetensorsscalessfdshapesliderSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetorchtunetzdbutf8vctrsviridisLitewarpwithrworkflowsyardstickzeallot
Fitting tabnet with tidymodels
Rendered fromtidymodels-interface.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-02-06
Started: 2020-12-18
Hierarchical Classification
Rendered fromHierarchical_classification.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-12-04
Started: 2023-07-22
Interpretation tools
Rendered frominterpretation.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2024-02-16
Started: 2021-01-07
Self-supervised training and fine-tuning
Rendered fromselfsupervised_training.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2023-07-22
Started: 2023-07-22
Training a Tabnet model from missing-values dataset
Rendered fromMissing_data_predictors.Rmd
usingknitr::rmarkdown
on Oct 29 2024.Last update: 2024-02-16
Started: 2022-02-11
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Parameters for the tabnet model | attention_width decision_width feature_reusage mask_type momentum num_independent num_shared num_steps |
Plot tabnet_explain mask importance heatmap | autoplot.tabnet_explain |
Plot tabnet_fit model loss along epochs | autoplot.tabnet_fit autoplot.tabnet_pretrain |
Non-tunable parameters for the tabnet model | cat_emb_dim checkpoint_epochs drop_last encoder_activation lr_scheduler mlp_activation mlp_hidden_multiplier num_independent_decoder num_shared_decoder optimizer penalty verbose virtual_batch_size |
Check that Node object names are compliant | check_compliant_node |
Prune top layer(s) of a tabnet network | nn_prune_head.tabnet_fit nn_prune_head.tabnet_pretrain |
Turn a Node object into predictor and outcome. | node_to_df |
Parsnip compatible tabnet model | tabnet |
Configuration for TabNet models | tabnet_config |
Interpretation metrics from a TabNet model | tabnet_explain tabnet_explain.default tabnet_explain.model_fit tabnet_explain.tabnet_fit tabnet_explain.tabnet_pretrain |
Tabnet model | tabnet_fit tabnet_fit.data.frame tabnet_fit.default tabnet_fit.formula tabnet_fit.Node tabnet_fit.recipe |
TabNet Model Architecture | tabnet_nn |
Tabnet model | tabnet_pretrain tabnet_pretrain.data.frame tabnet_pretrain.default tabnet_pretrain.formula tabnet_pretrain.Node tabnet_pretrain.recipe |