Package: tabnet 0.6.0.9000

Christophe Regouby

tabnet: Fit 'TabNet' Models for Classification and Regression

Implements the 'TabNet' model by Sercan O. Arik et al. (2019) <doi:10.48550/arXiv.1908.07442> with 'Coherent Hierarchical Multi-label Classification Networks' by Giunchiglia et al. <doi:10.48550/arXiv.2010.10151> and provides a consistent interface for fitting and creating predictions. It's also fully compatible with the 'tidymodels' ecosystem.

Authors:Daniel Falbel [aut], RStudio [cph], Christophe Regouby [cre, ctb], Egill Fridgeirsson [ctb], Philipp Haarmeyer [ctb], Sven Verweij [ctb]

tabnet_0.6.0.9000.tar.gz
tabnet_0.6.0.9000.zip(r-4.5)tabnet_0.6.0.9000.zip(r-4.4)tabnet_0.6.0.9000.zip(r-4.3)
tabnet_0.6.0.9000.tgz(r-4.4-any)tabnet_0.6.0.9000.tgz(r-4.3-any)
tabnet_0.6.0.9000.tar.gz(r-4.5-noble)tabnet_0.6.0.9000.tar.gz(r-4.4-noble)
tabnet_0.6.0.9000.tgz(r-4.4-emscripten)tabnet_0.6.0.9000.tgz(r-4.3-emscripten)
tabnet.pdf |tabnet.html
tabnet/json (API)
NEWS

# Install 'tabnet' in R:
install.packages('tabnet', repos = c('https://mlverse.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mlverse/tabnet/issues

Pkgdown site:https://mlverse.github.io

On CRAN:

tabnet

9.08 score 108 stars 62 scripts 846 downloads 32 exports 99 dependencies

Last updated 4 months agofrom:fe56a04e38. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 28 2024
R-4.5-winOKDec 28 2024
R-4.5-linuxOKDec 28 2024
R-4.4-winOKDec 28 2024
R-4.4-macOKDec 28 2024
R-4.3-winOKDec 28 2024
R-4.3-macOKDec 28 2024

Exports:%>%attention_widthcat_emb_dimcheck_compliant_nodecheckpoint_epochsdecision_widthdrop_lastencoder_activationfeature_reusagelr_schedulermask_typemlp_activationmlp_hidden_multipliermomentumnn_prune_head.tabnet_fitnn_prune_head.tabnet_pretrainnode_to_dfnum_independentnum_independent_decodernum_sharednum_shared_decodernum_stepsoptimizerpenaltytabnettabnet_configtabnet_explaintabnet_fittabnet_nntabnet_pretrainverbosevirtual_batch_size

Dependencies:bitbit64callrclasscliclockcodetoolscolorspacecorocpp11crayondata.tabledata.treedescdiagramdialsDiceDesigndigestdoFuturedplyrfansifarverforeachfurrrfuturefuture.applygenericsggplot2globalsgluegowerGPfitgtablehardhathmsipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalhslifecyclelistenvlubridatemagrittrMASSMatrixmgcvmodelenvmunsellnlmennetnumDerivparallellyparsnippillarpkgconfigprettyunitsprocessxprodlimprogressprogressrpspurrrR6RColorBrewerRcpprecipesrlangrpartrsamplesafetensorsscalessfdshapesliderSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetorchtunetzdbutf8vctrsviridisLitewarpwithrworkflowsyardstickzeallot

Fitting tabnet with tidymodels

Rendered fromtidymodels-interface.Rmdusingknitr::rmarkdownon Dec 28 2024.

Last update: 2023-02-06
Started: 2020-12-18

Hierarchical Classification

Rendered fromHierarchical_classification.Rmdusingknitr::rmarkdownon Dec 28 2024.

Last update: 2023-12-04
Started: 2023-07-22

Interpretation tools

Rendered frominterpretation.Rmdusingknitr::rmarkdownon Dec 28 2024.

Last update: 2024-02-16
Started: 2021-01-07

Self-supervised training and fine-tuning

Rendered fromselfsupervised_training.Rmdusingknitr::rmarkdownon Dec 28 2024.

Last update: 2023-07-22
Started: 2023-07-22

Training a Tabnet model from missing-values dataset

Rendered fromMissing_data_predictors.Rmdusingknitr::rmarkdownon Dec 28 2024.

Last update: 2024-02-16
Started: 2022-02-11

Readme and manuals

Help Manual

Help pageTopics
Parameters for the tabnet modelattention_width decision_width feature_reusage mask_type momentum num_independent num_shared num_steps
Plot tabnet_explain mask importance heatmapautoplot.tabnet_explain
Plot tabnet_fit model loss along epochsautoplot.tabnet_fit autoplot.tabnet_pretrain
Non-tunable parameters for the tabnet modelcat_emb_dim checkpoint_epochs drop_last encoder_activation lr_scheduler mlp_activation mlp_hidden_multiplier num_independent_decoder num_shared_decoder optimizer penalty verbose virtual_batch_size
Check that Node object names are compliantcheck_compliant_node
Prune top layer(s) of a tabnet networknn_prune_head.tabnet_fit nn_prune_head.tabnet_pretrain
Turn a Node object into predictor and outcome.node_to_df
Parsnip compatible tabnet modeltabnet
Configuration for TabNet modelstabnet_config
Interpretation metrics from a TabNet modeltabnet_explain tabnet_explain.default tabnet_explain.model_fit tabnet_explain.tabnet_fit tabnet_explain.tabnet_pretrain
Tabnet modeltabnet_fit tabnet_fit.data.frame tabnet_fit.default tabnet_fit.formula tabnet_fit.Node tabnet_fit.recipe
TabNet Model Architecturetabnet_nn
Tabnet modeltabnet_pretrain tabnet_pretrain.data.frame tabnet_pretrain.default tabnet_pretrain.formula tabnet_pretrain.Node tabnet_pretrain.recipe